Timelike surfaces in Lorentz covariant loop gravity and spin foam models
نویسندگان
چکیده
We construct a canonical formulation of general relativity for the case of a timelike foliation of spacetime. The formulation possesses explicit covariance with respect to Lorentz transformations in the tangent space. Applying the loop approach to quantize the theory we derive the spectrum of the area operator of a two-dimensional surface. Its different branches are naturally associated to spacelike and timelike surfaces. The results are compared with the predictions of Lorentzian spin foam models. A restriction of the representations labeling spin networks leads to perfect agreement between the states as well as the area spectra in the two approaches.
منابع مشابه
Projected Spin Networks for Lorentz connection: Linking Spin Foams and Loop Gravity
In the search for a covariant formulation for Loop Quantum Gravity, spin foams have arised as the corresponding discrete space-time structure and, among the different models, the Barrett-Crane model seems the most promising. Here, we study its boundary states and introduce cylindrical functions on both the Lorentz connection and the time normal to the studied hypersurface. We call them projecte...
متن کاملHilbert space structure of covariant loop quantum gravity
We investigate the Hilbert space in the Lorentz covariant approach to loop quantum gravity. We restrict ourselves to the space where all area operators are simultaneously diagonalizable, assuming that it exists. In this sector quantum states are realized by a generalization of spin network states based on Lorentz Wilson lines projected on irreducible representations of an SO(3) subgroup. The pr...
متن کاملSimplicity and closure constraints in spin foam models of gravity
We revise imposition of various constraints in spin foam models of 4-dimensional general relativity. We argue that the usual simplicity constraint must be supplemented by a constraint on holonomies and together they must be inserted explicitly into the discretized path integral. At the same time, the closure constraint must be relaxed so that the new constraint expresses covariance of intertwin...
متن کاملRelating Covariant and Canonical Approaches to Triangulated Models of Quantum Gravity
In this paper explore the relation between covariant and canonical approaches to quantum gravity and BF theory. We will focus on the dynamical triangulation and spin-foam models, which have in common that they can be defined in terms of sums over space-time triangulations. Our aim is to show how we can recover these covariant models from a canonical framework by providing two regularisations of...
متن کاملSpin foam model from canonical quantization
We suggest a modification of the Barrett-Crane spin foam model of 4-dimensional Lorentzian general relativity motivated by the canonical quantization. The starting point is Lorentz covariant loop quantum gravity. Its kinematical Hilbert space is found as a space of the so-called projected spin networks. These spin networks are identified with the boundary states of a spin foam model and provide...
متن کامل